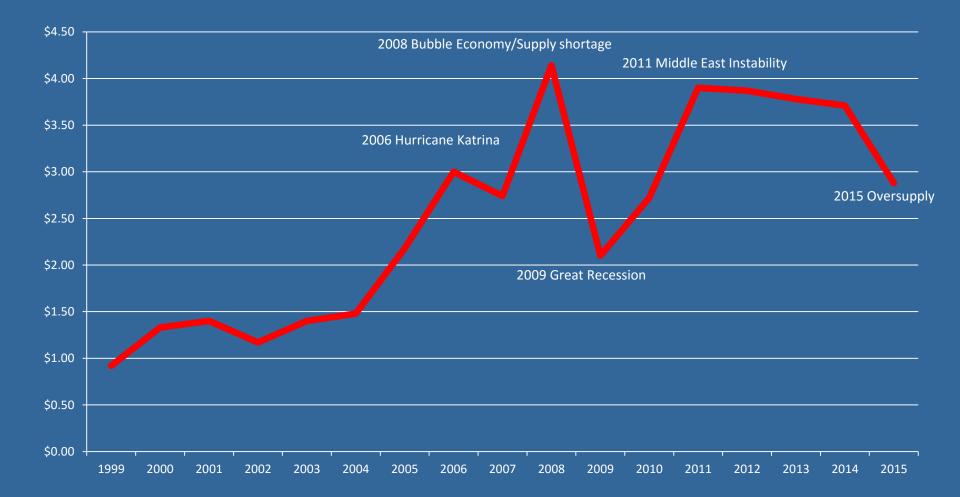
All About the Boat Vessel Energy Consumption and Fuel Efficiency

In collaboration with:



SITKA AK

This publication is supported in part by funds from NOAA Award #NA15NMF4270275. The statements, findings, conclusions and recommendations are those of the authors and do not necessarily reflect the views of NOAA or the Dept. of Commerce.

Alaska Fuel Prices

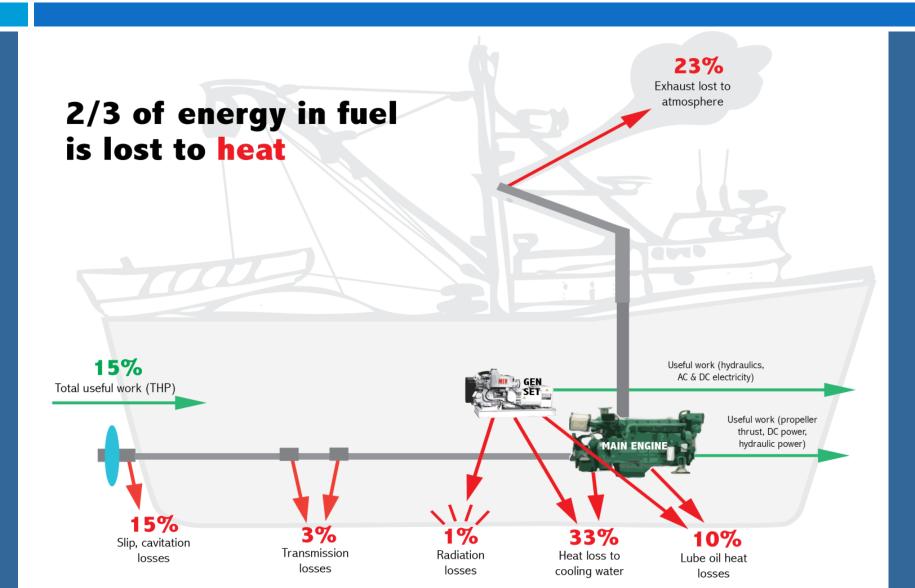
Effects of High Fuel Prices on Fishermen

2008 Sea Grant study

- 33% said they had quit fishing earlier in the season
- 31% said they skipped fishing openings they would otherwise have fished
- 7% said they fished with other IFQ permit holders, thus eliminating crew jobs
- 80% who did fish with a crew said the increased cost of fuel reduced the share paid to crew

2010 Energy Audit Project

Energy Audit Project:



Energy Audit Project: ^{4 Step Approach}

Develop an operational profile for the vessel
 Establish baseline energy loads for each profile
 Identify high energy consumers
 Research ECM appropriate for the vessel
 Implement during upgrades

Follow the money. That's energy management."

Fuel Efficiency Basics

Engine Efficiency:

Engines are most efficient when properly loaded

Energy Analysis Tool Step 1: Vessel Profiles

			-			
Vessel Name						
Туре						
Length	47	feet				
Fuel Cost /gallon	\$4.00	\$/gallon				
Shore power cost \$/kWh	\$0.12	\$/kWh				
Propulsion Engine #1 Size	165	Horsepower				
Propulsion Engine #1 Type	4 cycle non-turbo 🔹					
			If you know the kW fo			
Propulsion Engine #2 Size	0	НР	calculator below to co	nvert the KW numbe	er	
Propulsion Engine #2 Type	NA 🔻		into HP.			
			KW to HP	Conversion		
Auxiliary Engine #1 size	50	НР	KW	HP		
Auxiliary Engine #1 Type	4 cycle turbo 💌 🔻		25	33	3.5	
Aux Generator Engine #2 Size	0	НР				
Aux Generator Engine #2 Type	NA 🔻					

Name (e.g., Ice troll,		Propulsion Engine #1		Propulsion I	Engine #2	Aux Engine #1	Aux Engine #2
Operating Mode	gillnet, family outing)	Hrs Transit	Hrs Fishing	Hrs Transit	Hrs Fishing	Hrs Fishing	Hrs Fishing
1	Longline	125	160	0	0	15	0
2	Ice Troll	70	150	0	0	10	0
3	Freeze Troll	160	480	0	0	450	0
4	Misc	40	20	0	0	0	0
Total		395	810	0	0	475	0
		Total hrs	1205	Total hrs	0		

			Calculated Efficiency
Estimate Hydraulic System Condition	Good	▼	0.8
Estimate Alternator Performance	Standard	▼	0.7

Energy Analysis Tool Step 1: Vessel Profiles

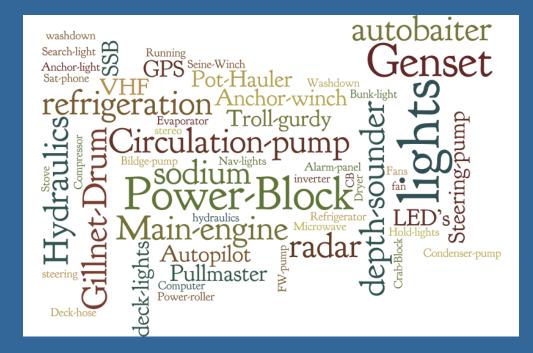
		Pro	pulsion Mainter	anc	e Cost			
#1 Main Engine			hourly cost		#2 Main Engine			cost
Maintenance	Interval (hrs.)	Cost (\$)	\$/hr.		Maintenance	Interval (hrs.)	Cost (\$)	\$/hr.
Oil Change	300	\$200.00	\$0.67		Oil Change	0	\$0.00	#DIV/0!
Annual misc. repair	1,200	\$500.00	\$0.42		Annual misc. repair	0	\$0.00	#DIV/0!
Minor overhaul	5,000	\$1,500.00	\$0.30		Minor overhaul	0	\$0.00	#DIV/0!
Major overhaul	30,000	\$25,000.00	\$0.83		Major overhaul	0	\$0.00	#DIV/0!
Other	0	\$0	#DIV/0!		Other	0	\$0	#DIV/0!
Other	0	\$0	#DIV/0!		Other	0	\$0	#DIV/0!
Total			\$2.22		Total			\$0.00

Auxiliary Engine Maintenance Cost

#1 Aux Engine Maintenance	Interval (hrs.)	Cost (S)	hourly cost \$/hr.
Oil Change	200	\$50.00	\$0.25
Annual misc. repair	500	\$300.00	\$0.60
Minor overhaul	2,500	\$1,000.00	\$0.40
Major overhaul	20,000	\$10,000.00	\$0.50
Other	0	\$0	#DIV/0!
Other	0	\$0	#DIV/0!
Total			\$1.75

ince cost								
			hourly					
#2 Aux Engine			cost					
Maintenance	Interval (hrs.)	Cost (\$)	\$/hr.					
Oil Change	0	\$0.00	#DIV/0!					
Annual misc. repair	0	\$0.00	#DIV/0!					
Minor overhaul	0	\$0.00	#DIV/0!					
Major overhaul	0	\$0.00	#DIV/0!					
Other	0	\$0	#DIV/0!					
Other	0	\$0	#DIV/0!					
Total			\$0.00					

Hydraulic System Maintenance


Hydraulic system Maintenance	Interval (hrs.)	Cost (S)	hourly cost \$/hr.
Oil Change	3,000	\$300.00	\$0.10
Annual misc. repair	500	\$100.00	\$0.20
Minor overhaul	0	\$0.00	#DIV/0!
Major overhaul	8,000	\$3,000.00	\$0.38
Other	0	\$0	#DIV/0!
Other	0	\$0	#DIV/0!
Total			\$0.68

Refrigeration System Maintenance

Refrigeration system Maintenance	Interval (hrs.)	Cost (\$)	hourly cost \$/hr.
Oil Change	0	\$0.00	#DIV/0!
Annual misc. repair	1,000	\$500.00	\$0.50
Minor overhaul	5,000	\$1,500.00	\$0.30
Major overhaul	10,000	\$500.00	\$0.05
Other	0	\$0	#DIV/0!
Other	0	\$0	#DIV/0!
Total			\$0.85

Energy Analysis Tool Step 2: Baseline energy loads

- Propulsion Loads
- Electric Loads
 - AC
 - DC
- Hydraulic Loads
- Refrigeration Loads

Energy Analysis Tool Step 2: Propulsion loads

			Propulsio	n	
	Transit	Fishing	HP	HP	
Speed (kn)	7	2	40.4	2.6	Engine 1
	Twin Engir	ne Propulsion	0.0	0.0	Engine 2

Energy Analysis Tool Step 2: DC Electric Loads

5 categories

- DC Hotel Loads
- DC Nav Lighting
- DC Nav Electronics
- Other DC Lighting
- DC Deck Loads
- Select equipment and Duty cycle

	DC Load		Power Demand (Watts)	# of devices	time used Transit	time used Fishing	Main 1	🗆 Main 2	Aux 1	Aux 2
DC Hotel Loads	Running bilge pump (with light)	5.6	72.6	0	0%	0.0%				
	fresh water pump	4.2	54.3	0	0%	0.0%				
	Cabin Fridge through inverter	9.4	122.0	0	0%	0%				
	Window Heater	4.8	63.0	0	0%	0.0%				
	Stove fan (low)	1.6	20.6	0	0%	0.0%				
	Stove fan (High)	2.3	30.3	0	0%	0.0%				
	ER fan	4.4	57.7	0	0%	0.0%				
DC Nav Lights	Running lights (incandescent)	2	26.0	0	0%	0.0%				
	Red Mast Light (incandescent)	0.6	7.6	0	0%	0.0%				
	Anchor light (incandescent)	1.4	18.1	0	0%	0.0%				
	Nav Running lights (3 LED bulb)	0.3	3.6	0	0%	0.0%				
	Red Mast Light (LED)	0.1	1.0	0	0%	0.0%				
	Anchor light LED	0.2	2.3	0	0%	0.0%	V			
	Other			0	0%	0.0%				
DC Nav Electronics	CB radio	0.6	7.5	0	0%	0.0%				
	CB Transmit	2.5	32.1	0	0%	0.0%				
	VHF	0.6	7.9	0	0%	0.0%				
	VHF Transmit	5	64.7	0	0%	0%				
	single side band	1.8	22.9	0	0%	0%				

Assumed Assumed

Energy Analysis Tool Step 2: AC Loads

- 4 broad categories
 - Hotel loads
 - Lighting
 - All Around
 - Deck
 - Other
 - Heating
 - Other AC loads

	AC Loads	Capacity (kW)	Fraction of Time Used Transit	Fraction of Time Used Fishing	S Main 1	🗌 Main 2	🗆 Aux 1	🗌 Aux 2
Hotel Loads	Refrigerator	0.10	0.0%	0%	N			
	Hot Water Heater	3.17	0.0%	0%	N			
	Hot Plate 1.5 kW	1.50	0.0%	0%	$\mathbf{\overline{s}}$			
	Microwave	1.50	0.0%	0%				
	Other Hotel	1.50	0.0%	0%				
Lighting	All Around Lighting	0	0.0%	0%	N			
	Deck Lighting	0	0.0%	0%	N			
	Other Lighting	0	0.0%	0%	N			
	Other Lighting	0	0.0%	0%	N			
Other	Heating	0	0.0%	20%	N			
	Other AC	0	0.0%	0%				
	Other AC	0	0.0%	0%	N			

Step 2: Hydraulic Loads

□ 4 broad categories

- Steering loads
- Hydraulic pump type
- Deck equipmentfocus of phase 2 is to get more data in library
- Other hydraulic loads

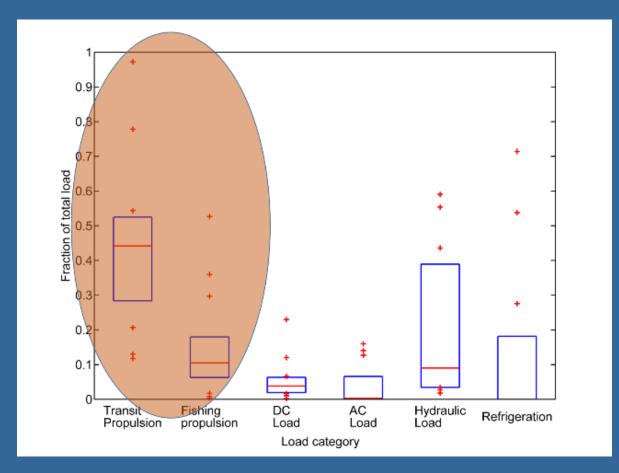
		Hydraulic Loads				_	~		
	Match O	perating Mode 1	Assumed Capacity	Fraction of Time Used	Fraction of Time Used	Main 1	Main 2	Aux 1	Aux 2
			(hp)	Transit	Fishing				
Steering	g Pumps	Sm Steering hyd pump	0.50	0.0%	0.0%	S			
		V-20 Steering pump	1.50	0.0%	0.0%				
Deck Hy	/draulics	Deck Hydraulic pump engaged	0.5	0.0%	0.0%	S			
Pur	nps	Pressure compensating pump	1.4	0.0%	0.0%	N			
Deck Hy	yd Equip	Washdown Pump	0.75	0.0%	0.0%	N			
		Anchor Winch	20.00	0.0%	0.0%	V			
		Troller 3/4 hp Gurdy	0.25	0.0%	0.0%	N			
		Longline Sheave	3.00	0.0%	0.0%				
		Auto Line system	5.00	0.0%	0.0%				
		Gill Net Drum	0.00	0.0%	0.0%	S			
		Power Roller	0.00	0.0%	0.0%				
		Seine winch	0.00	0.0%	0.0%				
		Other Deck Equip	0.0	0.0%	0.0%				
Ot	her	Other Hyd Equip	0.0	0.0%	0.0%	S			

Step 2: Refrigeration Loads

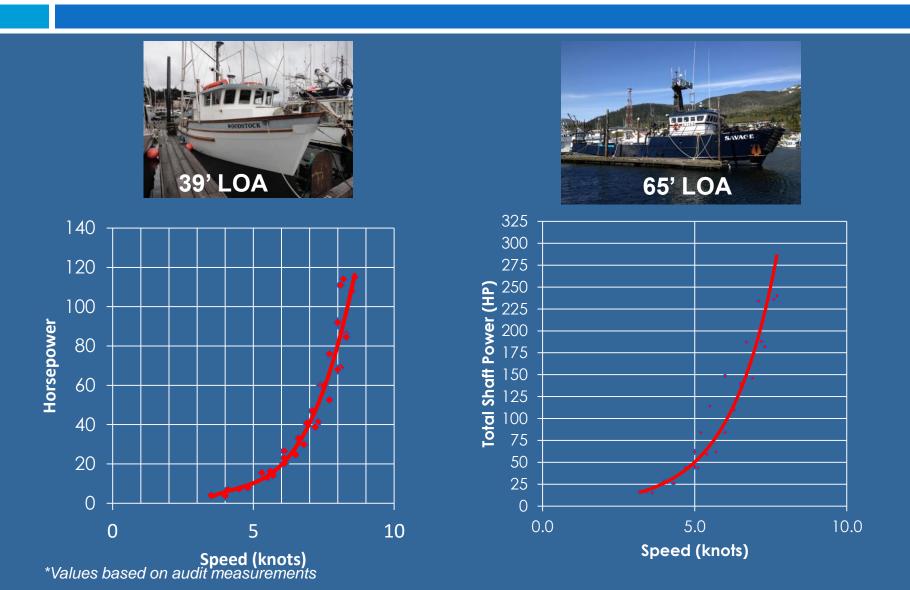
- Blast freezer
 - Compressor
 - Evaporator fan
 - Condenser pump
- □ RSW
- Compressor
- Condenser pump
- Recirculation fan

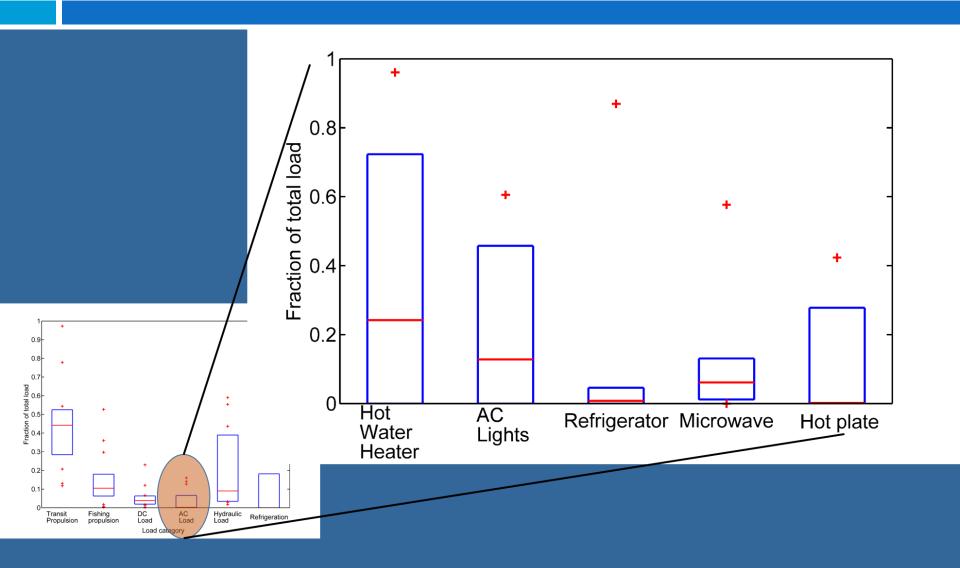
				Ę	N	_	2	
Match Operating Mode 1		НР	% of time used Transit	% of time used Fishing	D Mair	D Main	Aux	Aux
	7.5 ton compressor Max	16.2198391	0%	0.0%				
Blast Freeze system	7.5 ton compressor Ave	8.57908847	0%	0.0%				
	Evaporator Fan	0.67024129	0%	0.0%	N			
	Saltwater condenser pump	1.60857909	0%	0.0%	R			
	other		0%	0%	×			
RSW System	System 1	10.92	0%	0.0%	N			
	System 2	10.92	0%	0.0%	N			
	Condenser pump 1	0	0%	0.0%	N			
	Condenser Pump 2	0	0%	0.0%	R			
	Recirculation Pump 1	0	0%	0.0%	R			
	Other		0%	0.0%	N			

Fuel Use by Load Type

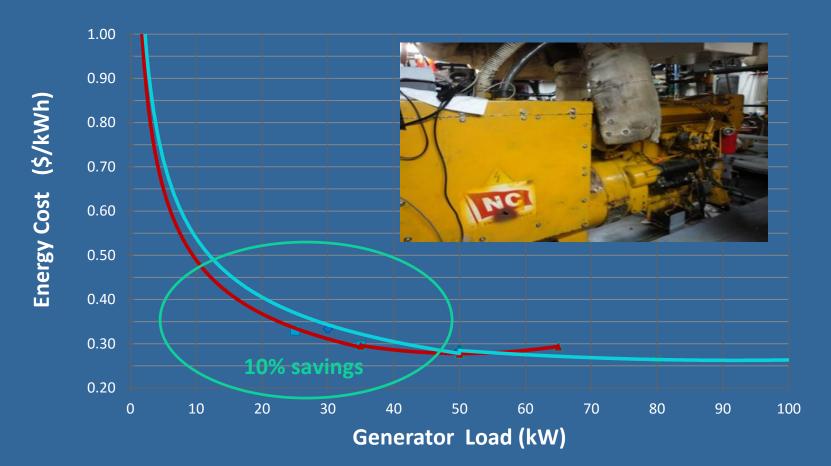

- Transit Propulsion
- Fishing propulsion
- DC Load
- AC Load
- Hydraulic Load
- Refrigeration

Cost by Load Type




Transit Maintenance
Transit Fuel
Fishing Maintenance
Fishing Fuel
DC Maintenance
DC Fuel
AC Maintenace
AC Fuel
Hydraulic Maintenance
Hydraulic Fuel
Refrigeration Maintenance
Refrigeration Fuel

What the Energy Audit Revealed: **Propulsion**



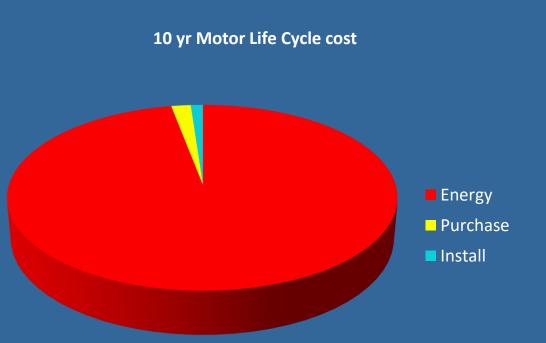
What the Energy Audit Revealed: Propulsion

Energy Analysis Tool Step 2: AC Loads

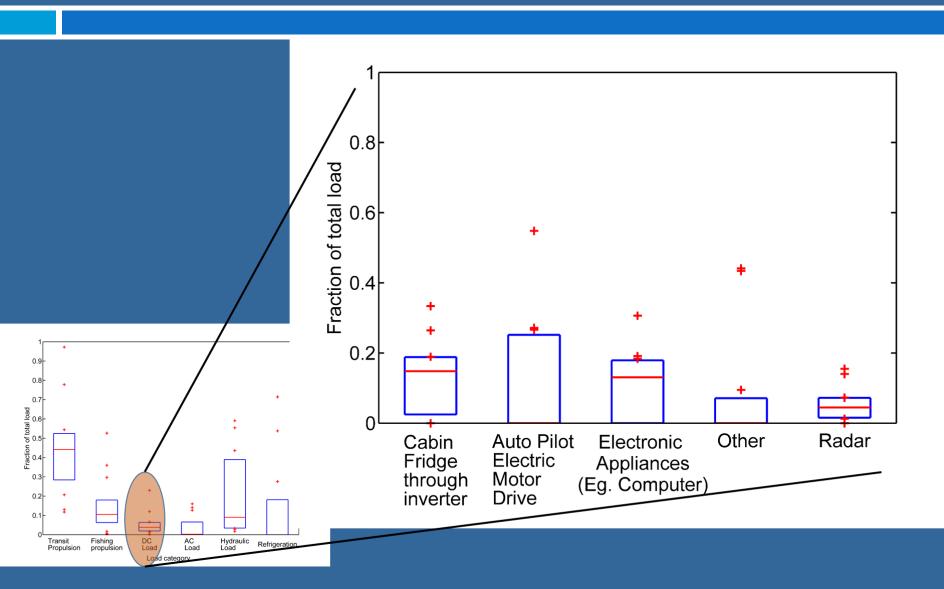
105 kW and 55 kW Gensets

Motor Efficiency and Savings

- 68% Standard Efficiency Motor 1 HP Circulating
 Pump
 - Input Power: 1.47 HP
 - Cost for 1000 hrs/yr operation @ \$0.5/HP: \$735
 - Purchase Price :\$321
- 82.5% Premium Efficiency Motor 1 HP Circulating Pump
 - Input Power: 1.21 HP
 - Cost for 1000 hrs/yr operation @ \$0.5/HP: \$605
 - Purchase Price: \$446

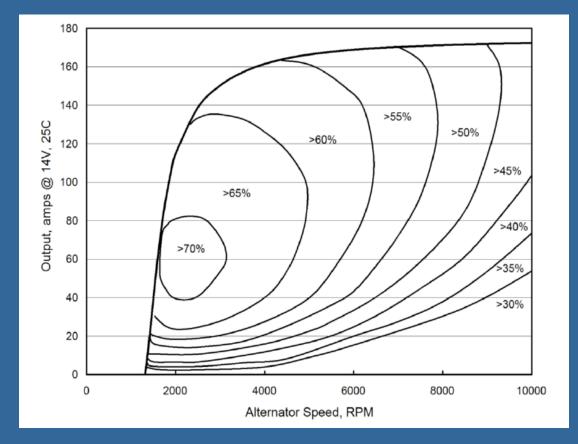


IE Class 3


Cost difference: \$125 Annual savings: \$130/year Motor life: 10 years Payback: 1 yr

Motor Efficiency and Savings

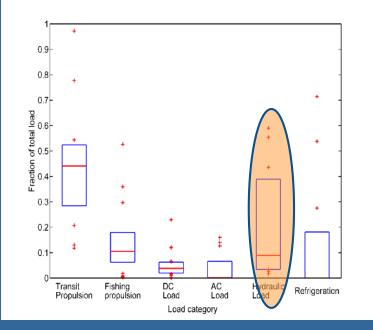
Purchase price: \$321 Install cost: \$100 Operating cost/yr.: \$735


Motor life: 10 years Total operating cost: \$7,350 % operating costs: 95% <u>% purchase and install: 5%</u>

DC power is not free

- DC electrical costs range
 from \$388 to over \$1000
 per season
- Belt type and tension matter
 - V belts are 95% efficient
 - Serpentine belts can be
 99% efficient
- Alternator efficiency depends on design and RP
 - Standard efficiency 45% to 55% (up to \$.70/kW/hr.)
 - Premium efficiency 55% to 85%

White Paper: Improving Alternator Efficiency Measurably Reduces Fuel Cost: Mike Bradfield, MSME, Remy Inc

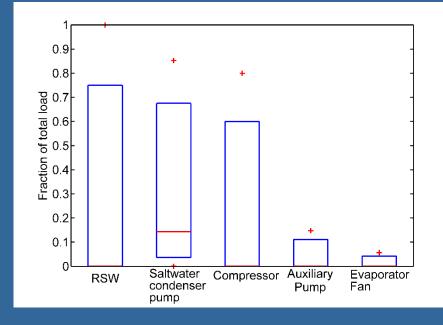

- Turn off lights, fans, appliances, pumps, etc. when not needed.
- Replace incandescent bulbs with CFL or LED.
- Switch to v-rib, cogged or synchronous drive belt. Maintain proper belt tension and prevent slippage.
- Size pulley so that alternator runs at design speed (commonly 4500-6000 rpm).
- At replacement time select premium efficiency alternator (not "high output")

What the Energy Audit Revealed:

Hydraulic Loads

- On some vessels, hydraulics accounted for more than 50% of the energy loads.
- Many vessels were configured so that pump runs continuously when engine is running.
 - Fuel use in stand-by mode was measured at .25GPH for a small pump

What the Energy Audit Revealed:


Hydraulic Loads

- De-clutch hydraulics when not in use.
- Track down and eliminate sources of heat and noise.
- Ensure all line runs are straight as possible with no corners or constrictions.
- Change fluid and filter regularly, and use lightest grade fluid recommended by equipment makers.
- Consider replacing hydraulics with more efficient electric drive where feasible.

Step 2: Refrigeration Loads

- Refrigerated seawater chilling and blast freezing can be run mechanically, electrically or hydraulically.
- Some run off main engine but more commonly a diesel auxiliary powers the refrigeration.
- Refrigeration is a major energy consumer.
 On some vessels it's more than half of all energy consumption.
- The compressor is the biggest energy consumer in both chilling and freezing systems. Others are seawater pump for condenser and circulation pump (RSW) and fan (blast freezer).

Energy Analysis Tool Step 2: Refrigeration Loads

- Compressor technology is improving
 VFD controllers
- Maintenance and operation can have a big impact on cost.

Energy Analysis Tool Step 2: Refrigeration Loads

Cumlative Energy - 24 hour 160.00 140.00 120.00 Total Consumed Energy (kWh) 100.00 80.00 60.00 40.00 20.00 0.00

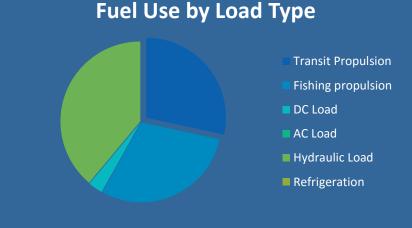
> Maintenance vs. Technology Compressor Power on Reefer Containers

Motors Control

VFD Controllers adjust AC motor RPM's to meet torque demand □ At 63% speed a motor load consumes only 25% of its full-speed power

Motor Variable Frequency Drives (VFD) Steering Gear, Fans, Pumps, Winches

Step 2: Refrigeration Loads


Diverse Fleet

Each with unique ECM's

Fuel Use by Load Type

- Transit Propulsion
- Fishing propulsion
- DC Load
- AC Load
- Hydraulic Load
- Refrigeration

Cost by Load Type

- Transit Maintenance
 Transit Fuel
 Tisking Maintenance
- Solution State St
- Fishing Fuel
- S DC Maintenance
- DC Fuel
- Section AC Maintenace
- AC Fuel
- Sector Secto
- Hydraulic Fuel
- Sefrigeration Maintenance
- Refrigeration Fuel

Cost by Load Type

Transit Maintenance
Transit Fuel
Fishing Maintenance
Fishing Fuel
DC Maintenance
DC Fuel
AC Maintenace
AC Fuel
Hydraulic Maintenance
Hydraulic Fuel
Refrigeration Maintenance
Refrigeration Fuel

All About the Boat Vessel Energy Consumption and Fuel Efficiency

In collaboration with:

Myriad

NOAA

This publication is supported in part by funds from NOAA Award #NA15NMF4270275. The statements, findings, conclusions and recommendations are those of the authors and do not necessarily reflect the views of NOAA or the Dept. of Commerce.