Fishing Vessel Energy Audit Project

Mike Gaffney, C.E.M., C.E.A., C.P.Q.

USCG Licensed Chief Engineer, Unlimited HP Exec VP Engineering, Alaris Companies

November 20, 2014 Seattle, WA

Outline

- ➤ Energy Efficiency: The Big Picture
- ➤ Baseline: Why Do We Need One?
- ➤ Hull Power and Engine Efficiency
- >A/C Power
- ➤D/C Power
- ➤ Refrigeration System
- ➤ Hydraulic System

Goal: Reduce Cost

Ship Energy Efficiency: The Big Picture

Baseline

- > Reference point in which analysis is done
- > Better baselines provide better information for informed decisions
- ➤ Purpose of doing energy survey
- ➤ Energy Analysis Tool (E.A.T.): Helps fisherman develop their baseline of energy cost

Baseline: Energy Audit Measurements

Energy Audit Measurement Accuracy

- ➤ Relative Accuracy
- ➤ Absolute Accuracy

Measurement instruments

- ➤ Torque Meter
- ➤ Power Quality Meters
- ➤ Amp Meter
- ➤ Voltage Meters
- ➤Infrared Camera

Torque Meter Measuring Engine Shaft Horse Power

Propeller Shaft Power Measurements: 8 Fishing Vessels

Strain Gauge installed on Shaft

Intern Jacob Installing Strain Gauges on F/V Salty

Engine Fuel Efficiency Brake Specific Fuel Consumption (BSFC)

Engine Efficiency: Conversion of energy in fuel into useful work

- Lb of Fuel / HP-hr produced
- Kg of Fuel/ kWh produced
- Factors Effecting BSFC
 - Load on Engine
 - Air Temperature
 - Condition of Engine

Engine and Vessel Performance Curves

Woodstock

220hp 4 Cycle Cummins NH220

Woodstock 39' Power vs. Speed

Woodstock Fuel Cost/1,000 miles

Woodstock, Stabilizer and Fuel Penalty

F/V Myriad Speed Efficiency vs. Engine Efficiency

Engine Not Optimized for Normal Operating Speed

F/V Myriad: Most Economical Speed

Main Engine Fuel Cost vs. Total Cost

Energy Analysis Tool Includes User Defined Maintenance cost

Energy Analysis Tool F/V Myriad Main Engine Maintenance Input Page

#1 Main Engine Maintenance	Interval (hrs.)	Cost (\$)	Hourly Cost \$/hr.
Oil Change	300	\$200.00	\$0.67
Minor Overhaul	5,000	\$1,500.00	\$0.30
Major Overhaul	30,000	\$25,000.00	\$0.83
Annual Misc. Repair	1,200	\$500.00	\$0.42
Other	0	\$0	#DIV/0!
Other	0	\$0	#DIV/0!
Total			\$2.22

F/V Topaz (78', 1,000 HP): Shaft HP vs. Speed

A/C System: Generation and Load

Diesel Generators Inverters Loads:

- **≻**Motors
- **≻**Lights
- ➤ Heaters

Electrical Equipment Efficiency

F/V Savage Aux Power: 105 kW and 55 kW Gensets

F/V Savage Aux Load 2 day Trip 55 KW Cat Genset

Vessel Load

Savage: Aux Load 2 Day Trip 105 kW Cat Genset

Engine Efficiency and Costs

Load (kW)	Annual hours	Cost with 105 kW Engine	Cost with 55 kW Engine	Cost with 55 kW and 10 kW Engines
3	3000	\$3,780	\$3,690	\$2,790
8	1750	\$5,460	\$4,900	\$3,780
20	125	\$850	\$750	\$750
30	125	\$1,163	\$1,050	\$1,050
	Total	\$11,253	\$10,390	\$8,370
			Savings	\$2,883

A/C Power from Inverters

≻Square Wave

- Issues with sensitive gear
- •Increases energy consumption
- Lowest Cost

≻Modified Wave

- Less equipment sensitive
- Better efficiency
- Modest cost

>True Sine Wave

- No issues with sensitive gear
- Same or better than shore power
- Best efficiency for gear
- Highest Cost

Efficiency and impact on cost example to follow in next section

Square Wave Inverter

Shore Power

Motor Efficiency

http://ngelmuelektro.wordpress.com/2011/06/24/motor-efficiency

Motor Efficiency and Savings

88% Standard Efficient Motor - 15 HP Circulating Pump

Input Power: 17.04 HP

Cost for 2000 hrs/yr (23%) operation: **\$8,898**

92.4% Premium Efficient Motor - 15 HP Circulating Pump

Input Power: 16.23 HP

Cost for 2000 hrs/yr (23%) operation: **\$8,475**

Annual Savings: \$423/yr

Initial Cost: \$1,600

Motor Life: 10 yrs

Annual ROI: 16.4%

Payback: 3.78 yrs

10 Year Motor Life Cycle cost

Motor Efficiency and Savings

68% Standard Efficient Motor - 1 HP Circulating Pump

Input Power: 1.47 HP

Cost for 2000 hrs/yr (23%) operation: **\$768**

Purchase Price: \$321

82.5% Premium Efficient Motor - 1 HP Circulating Pump

Input Power: 1.21 HP

Cost for 2000 hrs/yr (23%) operation: **\$626**

Purchase Price: \$446

Annual Savings: \$141/yr

Cost Difference: \$125

Motor Life: 10 yrs

Annual ROI: 102.7%

Payback: .89 yrs

http://www.baldor.com/products/

MOTORS CONTROL

VFD for S.W. Cooling Pump

Reduce Centrifugal Pump Speed by ½

Power and Fuel Consumption reduced to 1/8

Motor Variable
Frequency Drives (VFD)
Steering Gear, Fans,
Pumps, Winches

F/V Topaz Steering Gear

VFD on
Hydraulic
Steering
70% Reduction
in Energy
Usage

DC Power Generation

Alternator and Drive Belt Efficiency

DC Power Generation

Belt Losses: Engine to Alternator INDUSTRIAL BELTS 93%

Energy Loss and Efficiency of Power Transmission Belts, Third World Energy Engineering Congress, The Association of **Energy Engineers**

Alternator Efficiency: Load and Speed

White Paper: Improving Alternator Efficiency Measurably Reduces Fuel Cost: Mike Bradfield, MSME, Remy Inc

DC System Alternator Efficiency: 45% to 85%

DC Load: Ave. **800 Watts**Hours Fishing and Transit = 1,549 hrs
Engine BSFC 228 g/kWh = \$0.29/kWh
Fuel Cost before Alternator Losses:

\$360

Alternator input power for 800 Watt:

45% Efficient: 1,778 Watts

85% Efficient: 941 Watts

Baseline From McCrea Energy Analysis Tool

DC Generation Efficiency Comparison

McCrea DC Load from Energy Analysis Tool: Ave 800W Hours Fishing and Transit = 1,549

Energy Cost: Engine BSFC 228 g/kWh = \$0.29/kWh

Fuel Cost before without Losses: \$360

Engine Power to Belt Drive 45% Efficient Alternator (1,775 W)

V Belt 90% Efficiency: 1,976 W

Fuel Cost: \$857

Energy Cost: \$0.69/kWh

Engine Power to Belt Drive 85% Efficient Alternator (941 W)

Synchronous Belt 98% Efficiency: 960 W

Fuel Cost: \$408

Energy Cost: \$0.32/kWh

Savings with Efficient Equipment: \$449/year

Inverter Efficiency

Comparison: Fuel cost for 1,000 Watt (1 kW) load for 1,000 hrs being charged by alternator on engine

Older 80% efficient Inverter

DC Input Power: 1,250 Watts

Engine Power (Alternator Efficiency 50%): 2,500 Watts

Total Efficiency: 40%

\$/kWh fuel cost with engine at \$0.40kWh = \$1.00 kWh

Total Fuel Cost: \$1,000

New 95% efficient inverter:

DC Input Power: 1,052Watts

Engine Power (Alternator Efficiency 70%): 1,502 Watts

Total Efficiency: 66%

\$/kWh cost with engine at \$0.40kWh = \$0.60 kWh

Total Fuel Cost: \$600

Low Loaded diesel Genset:

\$.90/kWh and Up plus Maintenance (\$1.50/hr to \$2.25/hr): **\$2.40.kWh**

Total Fuel and Maintenance = \$2,400 to \$3,150

Refrigeration System

- ➤ Compressor Efficiency
- ➤ Maintenance
- **≻**Operating Pressure

F/V Born Again

Maintenance vs. Technology Compressor Power on Reefer Containers

Hydraulic Systems

- ➤ Efficiency
- ➤ Viscosity
- ➤ Cleanliness

El Rio: Belt Driven Engine Mounted Hydraulic Pump

Hydraulic Systems F/V McCrea

Engaged Hydraulic System Losses Produces 2.24 kW of Waste Heat

Hydraulic Systems: F/V Myriad

	Measured	
Activity	Fuel (GPH)	Change (GPH)
Trolling with hydraulics OFF	1.47	
Trolling with hydraulics ON	1.68	-0.22
Trolling while Running Gear w Hydraulics	1.74	-0.27

	Name (eg. Ice troll, gillnet,	Propulsion Engine #1	
Operating Mode	family outing)	Hrs Transit	Hrs Fishing
1	Longline	125	160
2	Ice troll	70	150
3	Freeze troll	160	480
4	family	40	20
Total		395	810

Energy Analysis Tool Vessel Profile Page

Ave Hourly Hydraulic Loss Cost: \$1/hr

No Load Hydraulic Fuel Cost on All the Time (1,205 hrs): = \$1,205

Only Engage Hydraulics When Needed for Useful Work

Thank You!

Back Up Slides

Radio: HP vs. Speed

F/V Radio Speed Efficiency vs. Engine Efficiency

F/V Savage: Shaft HP vs. Speed

F/V Savage Ship Efficiency vs. Engine Efficiency

F/V Salty (42ft. Gillnetter): Shaft HP vs. Speed

F/V El Roi (40 ft. Gillnetter: Shaft Power vs. Speed)

A/C Power from Inverters Harmonic Distortion

Square Wave Inverter

Shore Power

A/C Power from Inverters True Sine Wave Inverters

Sine Wave Inverter

Shore Power

HIGH EFFICIENCY LIGHTING

\$63,519
\$36,866
1.7
62%
\$340,549
117.4
213,962
8,999

- Fluorescent Bulbs and Ballast
 - T12 Bulbs and Ballast phased out
 - Match Ballast to Bulbs
 - Specs for Bulbs and Ballast
- •LED
 - New Technology
 - Life and Lumen output improved
 - Cost decreasing
 - Ensure quality LED used
 - Thermal Management of LED

ENERGY STAR LABEL ENERGY STAR LABEL REQUIREMENTS

- Must be a good investment
- Non –proprietary
- Must deliver same features and performance
- Energy savings and performance tested and verified

